Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

School of Electrical Engineering and Computer Science
University of Central Florida

COP 4710: Indexing Page 1 Mark Llewellyn ©

&




Static Hashing

A bucket Is a unit of storage containing one or more records (a
bucket Is typically a disk block).

In a hash file organization we obtain the bucket of a record
directly from its search-key value using a hash function.

Hash function h is a function from the set of all search-key values
K to the set of all bucket addresses B.

Hash function i1s used to locate records for access, insertion as
well as deletion.

Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record.

P
COP 4710: Indexing Page 2 Mark Llewellyn © g)}




Example of Hash File Organization

Hash file organization of account file, using branch-name as key
(See figure in next slide.)

e There are 10 buckets,

» The binary representation of the ith character is assumed to be the
Integer I.

* The hash function returns the sum of the binary representations of
the characters modulo 10

— E.g. h(Perryridge) =5 h(Round Hill) =3 h(Brighton) =3

r
COP 4710: Indexing Page 3 Mark Llewellyn © gj‘]




Example of Hash File Organization

bucket 0 bucket 5
A-102 | Perryridge
Hash file A-201 | Perryridge
. . A-218 | Perryridge
organization of
account file, using bucket 6

branch-name as key

(see previous slide

fOr detai IS) . bucket 7

A-215 Mianus

Brighton Downtown

Round Hill Downtown

bucket 9

Redwood

COP 4710: Indexing Page 4 Mark Llewellyn ©




Hash Functions

Worst has function maps all search-key values to the same bucket; this
makes access time proportional to the number of search-key values in
the file.

An ideal hash function is uniform, i.e., each bucket Is assigned the
same number of search-key values from the set of all possible values.

Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution
of search-key values in the file.

Typical hash functions perform computation on the internal binary
representation of the search-key.

— For example, for a string search-key, the binary representations of all the
characters in the string could be added and the sum modulo the number of
buckets could be returned. .

P
COP 4710: Indexing Page 5 Mark Llewellyn © g)}




Handling of Bucket Overflows

 Bucket overflow can occur because of
— Insufficient buckets

— Skew In distribution of records. This can occur due
to two reasons:

« multiple records have same search-key value

 chosen hash function produces non-uniform distribution of
key values

 Although the probability of bucket overflow can
be reduced, It cannot be eliminated; it is handled
by using overflow buckets.

P
COP 4710: Indexing Page 6 Mark Llewellyn © g/';




Handling of Bucket Overflows (cont)

« Overflow chaining — the overflow buckets of a given bucket are chained
together in a linked list.

« Above scheme is called closed hashing.

— An alternative, called open hashing, which does not use overflow buckets,
IS not suitable for database applications.

bucket 0

bucket 1

overflow buckets for bucket 1

(
COP 4710: Indexing Page 7 Mark Llewellyn © g};




Hash Indices

* Hashing can be used not only for file organization, but also for
Index-structure creation.

* A hash index organizes the search keys, with their associated
record pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary indices

— 1f the file itself is organized using hashing, a separate
primary hash index on it using the same search-key is
unnecessary.

— However, we use the term hash index to refer to both
secondary index structures and hash organized files.

P
COP 4710: Indexing Page 8 Mark Llewellyn © g)}




Example of Hash Index

bucket 0

bucket 1
A-21 5 Bri ghton
A-305 D()Wntown

Downtown

bucket 2
A-101
A-110

Mianus
Perryridge
Perryridge
bucket 3 Perryridge
A-217 _ Redwood
A-102 Round Hill

bucket 4
A-218

bucket 5

bucket 6
A-222

COP 4710: Indexing Page 9 Mark Llewellyn ©




Deficiencies of Static Hashing

* In static hashing, function h maps search-key values to a fixed
set of B of bucket addresses.

— Databases grow with time. If initial number of buckets is too
small, performance will degrade due to too much overflows.

— If file size at some point in the future is anticipated and number of
buckets allocated accordingly, significant amount of space will be
wasted initially.

— If database shrinks, again space will be wasted.

— One option is periodic re-organization of the file with a new hash
function, but it is very expensive.

« These problems can be avoided by using techniques that allow
the number of buckets to be modified dynamically.

P
COP 4710: Indexing Page 10 Mark Llewellyn © g/';




Dynamic Hashing

Good for database that grows and shrinks in size
Allows the hash function to be modified dynamically
Extendable hashing — one form of dynamic hashing

Hash function generates values over a large range — typically b-bit
Integers, with b = 32.

At any time use only a prefix of the hash function to index into a table of
bucket addresses.

Let the length of the prefix be i bits, 0 <1< 32.

Bucket address table size = 2! Initially i =0

Value of 1 grows and shrinks as the size of the database grows and
shrinks.

Multiple entries in the bucket address table may point to a bucket.
Thus, actual number of buckets is < 2!

 The number of buckets also changes dynamically due to coalescing
and splitting of buckets.

T
COP 4710: Indexing Page 11 Mark Llewellyn © g)}




General Extendable Hash Structure

hash prefix

1

00 - -

bucket 1
01 --

10 .-

11--

bucket 2

bucket 3

bucket address table

In this structure, i, = i; =1, whereas i; =i — 1 (see next slide for details)

COP 4710: Indexing Page 12 Mark Llewellyn ©




Use of Extendable Hash Structure

* Each bucket J stores a value 1;; all the entries that point to the
same bucket have the same values on the first ij bits.

* To locate the bucket containing search-key K;:

1. Compute h(K;) = X
2. Use the first 1 high order bits of X as a displacement into bucket address
table, and follow the pointer to appropriate bucket

* Toinsert arecord with search-key value K,
— follow same procedure as look-up and locate the bucket, say j.
— If there is room in the bucket j insert record in the bucket.
— Else the bucket must be split and insertion re-attempted (next slide.)

e Qverflow buckets used instead in some cases

(
COP 4710: Indexing Page 13 Mark Llewellyn © gj‘l




Updates in Extendable Hash Structure

To split a bucket ] when inserting record with search-key value K;:

* If 1 >1; (more than one pointer to bucket J)

— allocate a new bucket z, and set I; and 1, to the old I; -+ 1.

— make the second half of the bucket address table entries pointing to |

to point to z

— remove and reinsert each record in bucket j.

— recompute new bucket for K; and insert record in the bucket (further
splitting is required if the bucket Is still full)

* If 1 =1; (only one pointer to bucket j)

— Iincrement i and double the size of the bucket address table.

— replace each entry in the table by two entries that point to the same

bucket.

— recompute new bucket address table entry for K;

Now | > ij so use the first case above.

COP 4710: Indexing Page 14

Mark Llewellyn ©

( L
ot |
S




Updates in Extendable Hash Structure

(cont.)

 When inserting a value, If the bucket is full after several splits
(that is, 1 reaches some limit b) create an overflow bucket instead
of splitting bucket entry table further.

o To delete a key value,
— locate it in its bucket and remove it.

— The bucket itself can be removed if it becomes empty (with
appropriate updates to the bucket address table).

— Coalescing of buckets can be done (can coalesce only with a
“buddy” bucket having same value of I; and same 1;—1 prefix, If it
IS present)

— Decreasing bucket address table size is also possible

* Note: decreasing bucket address table size Is an expensive
operation and should be done only if number of buckets
becomes much smaller than the size of the table

P
COP 4710: Indexing Page 15 Mark Llewellyn © g/';




Use of Extendable Hash Structure: Example

branch-name h(branch-name)

Brighton 0010 11011111 10110010 1100 00110000
Downtown 1010 0011 1010 00001100 0110 10011111
Mianus 1100 01111110 11011011 1111 00111010
Perryridge 1111 0001 0010 01001001 0011 01101101
Redwood 0011 0101 1010 01101100 1001 11101011
Round Hill 1101 10000011 11111001 1100 00000001

hash prefix
0

.

bucket address table bucket 1

Initial Hash structure, bucket size = 2

r
COP 4710: Indexing Page 16 Mark Llewellyn © gj‘]




Example (cont.)

Hash structure after insertion of one Brighton and two

Downtown records

hash prefix

Brighton

1 _/

bucket addresstable\

Downtown

Downtown

COP 4710: Indexing Page 17 Mark Llewellyn ©




Example (cont.)

Hash structure after insertion of Mianus record

hash prefix

Brighton

2 /

Downtown

Downtown

bucket address table

COP 4710: Indexing Page 18 Mark Llewellyn ©




Example (cont.)

hash prefix
3 Brighton

Downtown

Downtown

Mianus

Perryridge

Perryridge

bucket address table Perryridge

Hash structure after insertion of three Perryridge records

COP 4710: Indexing Page 19 Mark Llewellyn ©




Example (cont.)

Hash structure after insertion of Redwood and Round Hill records

hash prefix
3

bucket address table

Brighton

Redwood

Downtown

Downtown

Mianus

Round Hill

Perryridge

Perryridge

Perryridge

COP 4710: Indexing

Page 20

Mark Llewellyn ©




Extendable Hashing vs. Other Schemes

» Benefits of extendable hashing:
— Hash performance does not degrade with growth of file
— Minimal space overhead

« Disadvantages of extendable hashing
— Extra level of indirection to find desired record

— Bucket address table may itself become very big (larger than
memory)

e Need a tree structure to locate desired record iIn the
structure!

— Changing size of bucket address table is an expensive operation

e Linear hashing is an alternative mechanism which avoids these
disadvantages at the possible cost of more bucket overflows

P
COP 4710: Indexing Page 21 Mark Llewellyn © g)}




Comparison of Ordered Indexing and Hashing

« Cost of periodic re-organization
» Relative frequency of insertions and deletions

 |s it desirable to optimize average access time at the expense
of worst-case access time?

« EXxpected type of queries:

— Hashing is generally better at retrieving records having a
specified value of the key.

— If range queries are common, ordered indices are to be
preferred

r
COP 4710: Indexing Page 22 Mark Llewellyn © gj‘]




Multiple-Key Access

Use multiple indices for certain types of queries.

Example:
select account-number
from account
where branch-name = “Perryridge” and balance = 1000
Possible strategies for processing query using indices on single

attributes:

1. Use index on branch-name to find accounts with balances of $1000:
test branch-name = “Perryridge”.

2. Use index on balance to find accounts with balances of $1000; test
branch-name = “Perryridge”.

3. Use branch-name index to find pointers to all records pertaining to
the Perryridge branch. Similarly use index on balance. Take

Intersection of both sets of pointers obtained.

P
COP 4710: Indexing Page 23 Mark Llewellyn © g)}




Indices on Multiple Attributes

Suppose we have an index on combined search-key (branch-name,
balance).

With the where clause

where branch-name = “Perryridge” and balance = 1000

the index on the combined search-key will fetch only records that
satisfy both conditions.

Using separate indices in less efficient — we may fetch many records
(or pointers) that satisfy only one of the conditions.

Can also efficiently handle
where branch-name - “Perryridge” and balance < 1000

But cannot efficiently handle

where branch-name < “Perryridge” and balance = 1000

May fetch many records that satisfy the first but not the second
condition.

P
COP 4710: Indexing Page 24 Mark Llewellyn © g/';




